Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1375804, 2024.
Article in English | MEDLINE | ID: mdl-38591039

ABSTRACT

Introduction: The escalation of urbanization correlates with rising rates of inflammatory bowel disease (IBD), necessitating research into new etiological factors. This study aims to elucidate the gut microbiota profiles in IBD patients and compare them with healthy controls in a western city of China. Methods: We conducted a multicenter case-control study from the end of 2020, using 16S rRNA gene sequencing (n = 36) and metagenomic sequencing (n = 12) to analyze the gut microbiota of newly diagnosed IBD patients, including those with Crohn's disease (CD) and ulcerative colitis (UC). Results: Our results demonstrated a significant enrichment of the phylum Proteobacteria, particularly the genus Escherichia-Shigella, in CD patients. Conversely, the genus Enterococcus was markedly increased in UC patients. The core gut microbiota, such as the Christensenellaceae R-7 group, Fusicatenibacter, and Holdemanella, were primarily identified in healthy subjects. Additionally, significant interactions between the microbiome and virulence factors were observed. Discussion: The findings suggest that oxidative stress may play a pivotal role in the pathology of IBD. This study contributes to the growing dialogue about the impact of gut microbiota on the development of IBD and its variations across different geographies, highlighting potential avenues for further research.

2.
Chemistry ; : e202401272, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682719

ABSTRACT

Heterogeneous interface and defect engineering offer effective pathways to accelerate oxygen evolution reaction (OER) charge transfer kinetics and motivate optimal intrinsic catalytic activity. Herein, we report the lattice-matched NiO/NiFe2O4 heterostructure with ample oxygen vacancies (Vo-NiO/NiFe2O4) induced by a feasible hydrothermal followed by calcination and plasma-engraving assistant technique, which shows the unique porous microflower arrangement of intertwined nanosheets. Benefitting from the synergetic effects between lattice-matched heterointerface and oxygen vacancies induce the strong electronic coupling, optimized OH-/O2 diffusion pathway and ample active sites, thus-prepared Vo-NiFe2O4 presents a favorable OER performance with a low overpotential (261 mV @ 10 mA cm-2) and small Tafel slope (39.4 mV dec-1), even surpassing commercial RuO2 catalyst. Additionally, the two-electrode configuration water electrolyzer and rechargeable zinc-air battery assembled by Vo-NiO/NiFe2O4 catalyst show the potential practical application directions. This work provides an innovative avenue for strengthening OER performance toward water electrolysis and Zn-air batteries via the interface and vacancy engineering strategy.

3.
Int J Biol Macromol ; 265(Pt 2): 130930, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513898

ABSTRACT

Pre-formed V-type amylose as a kind of wall material has been reported to carry polyphenols, while the interaction mechanism between V-type amylose and polyphenol is still elusive. In this work, the formation and stability mechanism of a V7-type short amylose-resveratrol complex was investigated via isothermal titration calorimetry, molecular dynamics, and molecular docking. The results presented that two stoichiometric ratios of resveratrol to short amylose were calculated to 0.120 and 0.800, and the corresponding main driving force was hydrogen bonding and hydrophobic interaction, respectively. The folding and unfolding conformation of V7-type short amylose chains appeared alternately during the simulation. Resveratrol tended to be bound in the short amylose helix between 40 ns and 80 ns to form a more stable complex. Hydrogen bonds between resveratrol molecule and O6 at the 22nd glucose molecule/O2 at the 24th glucose molecules and hydrophobic interaction between resveratrol molecule and glucose molecules (19th, 20th, 21st and 23rd) could be found.


Subject(s)
Amylose , Molecular Dynamics Simulation , Resveratrol , Molecular Docking Simulation , Amylose/chemistry , Glucose
4.
J Genet Genomics ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38184105

ABSTRACT

Phosphatase and tensin homolog (PTEN) is a multifunctional gene that is involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex Ι subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.

5.
J Inflamm Res ; 14: 3489-3500, 2021.
Article in English | MEDLINE | ID: mdl-34326657

ABSTRACT

PURPOSE: Peptidyl arginine deiminase, type VI (PADI6), a member of the subcortical maternal complex, plays an important role in oocyte growth and the development of fertilized oocytes. Human patients with PADI6 mutations can suffer from multiple reproductive deficiencies including hydatidiform moles and miscarriages. Recent studies have demonstrated that the Hippo signaling pathway plays a central role in the specification of the first cell fates and the maintenance of the human placental trophoblast epithelium. The present study aimed to verify the hypothesis that PADI6 regulates the biological functions of trophoblast cells by targeting YAP1 and to explore the mechanism by which PADI6 accomplishes this in trophoblast cells. METHODS: Villi from HMs and human trophoblast cell lines were used to identify the localization of PADI6 and YAP1 by immunohistochemistry and immunocytochemistry. PADI6 overexpression and knockdown were induced in human trophoblast cells. Co-immunoprecipitation was used to explore the interaction between PADI6 and YAP1. Wound healing, Transwell and EdU staining assays were used to detect migration, invasion and proliferation. Flow cytometric analysis was used to analyze the cell cycle and apoptosis. ß-Tubulin and F-actin levels were determined by Western blot, quantitative real-time PCR and phalloidin staining. RESULTS: The results showed that PADI6 and YAP1 had the same expression pattern in villi and colocalized in the cytotrophoblast. An interaction between PADI6 and YAP1 was also confirmed in human trophoblast cell lines. We found that PADI6 positively regulated the expression of YAP1. Functionally, overexpression of PADI6 promoted cell cycle progression and enhanced migration, invasion, proliferation and apoptosis, whereas downregulation of PADI6 showed the opposite effects. CONCLUSION: This study demonstrates that YAP1 is a novel target of PADI6 that serves as an important regulator of trophoblast dysfunction. The crosstalk between the Hippo/YAP1 pathway and the SCMC might be a new topic to explore to uncover the pathological mechanisms of HMs.

6.
ACS Appl Bio Mater ; 4(9): 6843-6852, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006984

ABSTRACT

Corrosion issue is one of the most crucial bottlenecks for extensive employment of Mg alloys, in particular under harsh engineering conditions. Differing from traditional approaches, a self-healing protective coating composed of lactoglobulin is proposed herein to offer sustainable protection to the underlying Mg parts. Corrosion resistance, evaluated by electrochemical measurements and hydrogen evolution tests, indicates that the lactoglobulin composite film exhibits nobler corrosion potential (-1.28 VSCE), smaller corrosion current density (8.4 × 10-6 A/cm2), and lower average corrosion rate (∼0.03 mm/y) than those of its bare counterparts. Moreover, the pre-made cracks in the film were evidently self-healed within 24 h of exposure to corrosive media. The proposed self-healing lactoglobulin composite film provides opportunities to tackle the corrosion challenges of Mg alloys.


Subject(s)
Alloys , Magnesium , Coated Materials, Biocompatible , Corrosion , Lactoglobulins
7.
Nat Commun ; 11(1): 1972, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332881

ABSTRACT

Shieldin, including SHLD1, SHLD2, SHLD3 and REV7, functions as a bridge linking 53BP1-RIF1 and single-strand DNA to suppress the DNA termini nucleolytic resection during non-homologous end joining (NHEJ). However, the mechanism of shieldin assembly remains unclear. Here we present the crystal structure of the SHLD3-REV7-SHLD2 ternary complex and reveal an unexpected C (closed)-REV7-O (open)-REV7 conformational dimer mediated by SHLD3. We show that SHLD2 interacts with O-REV7 and the N-terminus of SHLD3 by forming ß sheet sandwich. Disruption of the REV7 conformational dimer abolishes the assembly of shieldin and impairs NHEJ efficiency. The conserved FXPWFP motif of SHLD3 binds to C-REV7 and blocks its binding to REV1, which excludes shieldin from the REV1/Pol ζ translesion synthesis (TLS) complex. Our study reveals the molecular architecture of shieldin assembly, elucidates the structural basis of the REV7 conformational dimer, and provides mechanistic insight into orchestration between TLS and NHEJ.


Subject(s)
Cell Cycle Proteins/chemistry , DNA End-Joining Repair , DNA-Binding Proteins/chemistry , Mad2 Proteins/chemistry , Amino Acid Motifs , Crystallography, X-Ray , DNA, Complementary/metabolism , HEK293 Cells , Humans , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Folding , Protein Multimerization , Protein Structure, Secondary
8.
J Ovarian Res ; 12(1): 52, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31174571

ABSTRACT

BACKGROUND: The ovary is an important organ of the female reproductive system, which produces oocytes and secretes reproductive hormones. Ovaries have complex dual blood supplies with their blood supply being the core component to protect and ensure ovarian function. Ovarian preservation surgery often encounters problems related to whether or not to preserve ovarian vessels on the affected side. CASE PRESENTATION: This study reports on the case of a 30-year-old female patient with the retroperitoneal fibromatosis that had a history of uterine leiomyoma. During the operation, the ovarian arteries and veins were separated according to what was found during the procedure. A postoperative examination demonstrated good function and morphology of the ovary. CONCLUSIONS: A thorough review of academic journals combined with our collection of clinical data was conducted, which confirmed the double blood supply source to the ovaries. As a result of this exploration, a new surgical method is being proposed that is designed to protect the ovaries. By conducting this new procedure, the patient's disease was not only halted and ultimately cured, but results demonstrate that the method was also able to retain the shape and function of the ovary. The postoperative satisfaction of the patient was significantly improved.


Subject(s)
Fibromatosis, Aggressive/surgery , Neoplasm Recurrence, Local/surgery , Organ Sparing Treatments/methods , Ovarian Neoplasms/surgery , Ovary/blood supply , Adult , Female , Fertility Preservation , Fibromatosis, Aggressive/pathology , Humans , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/pathology , Ovary/pathology , Ovary/surgery , Robotic Surgical Procedures , Treatment Outcome
9.
Proc Natl Acad Sci U S A ; 116(14): 6868-6877, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30886105

ABSTRACT

Arginine methylation is a ubiquitous posttranslational modification that regulates critical cellular processes including signal transduction and pre-mRNA splicing. Here, we report that the tumor-suppressor PTEN is methylated by protein arginine methyltransferase 6 (PRMT6). Mass-spectrometry analysis reveals that PTEN is dimethylated at arginine 159 (R159). We found that PTEN is mutated at R159 in cancers, and the PTEN mutant R159K loses its capability to inhibit the PI3K-AKT cascade. Furthermore, PRMT6 is physically associated with PTEN, promotes asymmetrical dimethylation of PTEN, and regulates the PI3K-AKT cascade through PTEN R159 methylation. In addition, using transcriptome analyses, we found that PTEN R159 methylation is involved in modulation of pre-mRNA alternative splicing. Our results demonstrate that PTEN is functionally regulated by arginine methylation. We propose that PTEN arginine methylation modulates pre-mRNA alternative splicing and influences diverse physiologic processes.


Subject(s)
Alternative Splicing , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Nuclear Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Precursors/metabolism , RNA, Neoplasm/metabolism , Signal Transduction , Cell Line, Tumor , HEK293 Cells , Humans , Methylation , Neoplasm Proteins/genetics , Neoplasms/genetics , Nuclear Proteins/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA Precursors/genetics , RNA, Neoplasm/genetics
10.
Anim Reprod Sci ; 169: 45-55, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26826909

ABSTRACT

Using a high-throughput optical tracking technique that is based on partially-coherent digital in-line holography, here we report a detailed analysis of the statistical behavior of horse sperms' three-dimensional (3D) swimming dynamics. This dual-color and dual-angle lensfree imaging platform enables us to track individual 3D trajectories of ∼1000 horse sperms at sub-micron level within a sample volume of ∼9µL at a frame rate of 143 frames per second (FPS) and collect thousands of sperm trajectories within a few hours for statistical analysis of their 3D dynamics. Using this high-throughput imaging platform, we recorded >17,000 horse sperm trajectories that can be grouped into six major categories: irregular, linear, planar, helical, ribbon, and hyperactivated, where the hyperactivated swimming patterns can be further divided into four sub-categories, namely hyper-progressive, hyper-planar, hyper-ribbon, and star-spin. The large spatio-temporal statistics that we collected with this 3D tracking platform revealed that irregular, planar, and ribbon trajectories are the dominant 3D swimming patterns observed in horse sperms, which altogether account for >97% of the trajectories that we imaged in plasma-free semen extender medium. Through our experiments we also found out that horse seminal plasma in general increases sperms' straightness in their 3D trajectories, enhancing the relative percentage of linear swimming patterns and suppressing planar swimming patterns, while barely affecting the overall percentage of ribbon patterns.


Subject(s)
High-Throughput Screening Assays/veterinary , Horses/physiology , Image Processing, Computer-Assisted , Lab-On-A-Chip Devices , Sperm Motility/physiology , Spermatozoa/physiology , Animals , High-Throughput Screening Assays/instrumentation , Male
11.
Cell Rep ; 13(7): 1295-1303, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26549452

ABSTRACT

PTEN is a tumor suppressor frequently mutated in human cancers. PTEN inhibits the phosphatidylinositol 3-kinase (PI3K)-AKT cascade, and nuclear PTEN guards the genome by multiple mechanisms. Here, we report that PTEN physically associates with the minichromosome maintenance complex component 2 (MCM2), which is essential for DNA replication. Specifically, PTEN dephosphorylates MCM2 at serine 41 (S41) and restricts replication fork progression under replicative stress. PTEN disruption results in unrestrained fork progression upon replication stalling, which is similar to the phenotype of cells expressing the phosphomimic MCM2 mutant S41D. Moreover, PTEN is necessary for prevention of chromosomal aberrations under replication stress. This study demonstrates that PTEN regulates DNA replication through MCM2 and loss of PTEN function leads to replication defects and genomic instability. We propose that PTEN plays a critical role in maintaining genetic stability through a replication-specific mechanism, and this is a crucial facet of PTEN tumor suppressor activity.


Subject(s)
DNA Replication , Minichromosome Maintenance Complex Component 2/metabolism , PTEN Phosphohydrolase/physiology , Chromosomal Instability , HCT116 Cells , Humans , Phosphorylation , Protein Processing, Post-Translational , Stress, Physiological
12.
Sci Rep ; 3: 1664, 2013.
Article in English | MEDLINE | ID: mdl-23588811

ABSTRACT

We report the discovery of an entirely new three-dimensional (3D) swimming pattern observed in human and horse sperms. This motion is in the form of 'chiral ribbons', where the planar swing of the sperm head occurs on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. The latter, i.e., the twisted ribbon trajectory, also defines a minimal surface, exhibiting zero mean curvature for all the points on its surface. These chiral ribbon swimming patterns cannot be represented or understood by already known patterns of sperms or other micro-swimmers. The discovery of these unique patterns is enabled by holographic on-chip imaging of >33,700 sperm trajectories at >90-140 frames/sec, which revealed that only ~1.7% of human sperms exhibit chiral ribbons, whereas it increases to ~27.3% for horse sperms. These results might shed more light onto the statistics and biophysics of various micro-swimmers' 3D motion.


Subject(s)
Models, Biological , Sperm Motility/physiology , Spermatozoa/cytology , Spermatozoa/physiology , Animals , Cells, Cultured , Horses , Humans , Male , Species Specificity
13.
Biopolymers ; 90(3): 259-77, 2008.
Article in English | MEDLINE | ID: mdl-17868092

ABSTRACT

Pancreatic ribonuclease A (EC 3.1.27.5, RNase) is, perhaps, the best-studied enzyme of the 20th century. It was isolated by René Dubos, crystallized by Moses Kunitz, sequenced by Stanford Moore and William Stein, and synthesized in the laboratory of Bruce Merrifield, all at the Rockefeller Institute/University. It has proven to be an excellent model system for many different types of experiments, both as an enzyme and as a well-characterized protein for biophysical studies. Of major significance was the demonstration by Chris Anfinsen at NIH that the primary sequence of RNase encoded the three-dimensional structure of the enzyme. Many other prominent protein chemists/enzymologists have utilized RNase as a dominant theme in their research. In this review, the history of RNase and its offspring, RNase S (S-protein/S-peptide), will be considered, especially the work in the Merrifield group, as a preface to preliminary data and proposed experiments addressing topics of current interest. These include entropy-enthalpy compensation, entropy of ligand binding, the impact of protein modification on thermal stability, and the role of protein dynamics in enzyme action. In continuing to use RNase as a prototypical enzyme, we stand on the shoulders of the giants of protein chemistry to survey the future.


Subject(s)
Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/history , Amino Acid Sequence , Animals , Cattle , Computer Simulation , Entropy , Forecasting , History, 20th Century , Models, Molecular , Protein Conformation , Protein Engineering , Protein Structure, Secondary , Ribonuclease, Pancreatic/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...